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Multistability and chaos in a spring-block model
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A simple spring-block model with two degrees of freedom capable of producing chaotic dynamics is
studied. The stability properties of fixed points and symmetry properties of solutions are analyzed.
Frequency-entrained oscillations are investigated by means of an averaging procedure, in the vicinity of
a principal resonance. An approximate analytical condition of asymmetric attractors arising, which can
be used as a precursor of the appearance of chaotic motions, is derived from the analysis of the fixed
points of averaged equations. Multistability of the averaged system is studied in detail and is shown to
be typical for the present model. Extensive computer experiments carried out within a broad range of
control parameters demonstrate statisfactory agreement between theoretical predictions and numerical
simulations. The calculated results are given in the form of two-parameter bifurcation diagrams, along
with phase portraits of different coexisting attractors. Many features, characteristics of nonlinear oscil-
lators, were observed, including period-doubling cascades, hysteresis, intermittency, and crises of chaotic
attractors. The system is strongly multistable in the sense that usually a regular attractor coexists with a
chaotic or quasiperiodic one. In this work we use a modified velocity-weakening friction law that admits
the presence of creeping motion. The introduction of a small region of creeping motion into the
velocity-friction relation is demonstrated to bring no principally new phenomena. Chaotic areas in con-

DECEMBER 1995

trol parameter space, however, broaden with the increase in the size of the creeping region.

PACS number(s): 05.45.+b

I. INTRODUCTION

In this paper we concentrate on one particular model
with two degrees of freedom. The system belongs to the
class of spring-block models with the velocity-weakening
friction law, which have been used for a long time as
deterministic simulators of earthquakes [1,2]. It was
demonstrated recently that the models of this class can
reproduce the well-known Gutenberg-Richter magni-
tude-frequency relation for earthquakes. In a series of
papers by Carlson and co-workers [3—-6] a detailed nu-
merical study of the large system, having many degrees of
freedom, has been carried out. It was shown, in particu-
lar, that without any spatial inhomogeneity and external
noises a large variety of events with different sizes occurs
in this system. The events of comparatively small magni-
tude obey the power law with an exponent close to unity,
whereas the large events that are responsible for almost
all energy release are much more frequent than can be ex-
pected from a simple extrapolation of the power law to
larger magnitudes. The interrelation between small and
large events was also investigated in order to provide a
technique for testing and fine tuning the earthquake pre-
diction algorithms [3,7-9].

The purpose of our study is to fill the gap that exists in
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the current knowledge of this class of models. On the
one hand, many results have been accumulated, concern-
ing various types of behavior observed in many-block
simulations [3—18]. On the other hand, surprisingly little
is known about the basic element of all these studies: the
two-degree-of-freedom two-block model. At the same
time, it is clear that some of the features exhibited by
these large systems [11,12,17,18] may originate from the
properties of their small subsystems consisting of few
blocks only.

Another important motivation for the present work is
that the system studied possesses a peculiar type of non-
linearity, with discontinuity in the friction law. This non-
analytic behavior of the friction force-velocity relation re-
quires different differential equations to be used for
defining the dynamics in different parts of the phase
space. This type of dynamical systems, being of
significant interest for applications, seems to be almost
unexplored so far.

It was shown in [19] that this system can produce
asymmetric regular patterns, thus leading to the con-
clusion about the possibility for nonlinear dynamics being
responsible for the formation of a complex space-time
distribution of earthquakes. Chaotic behavior was also
detected in the analogous system with an asymmetric
friction law [20]. However, the conclusion of [20] about
spatial inhomogeneity as a necessary condition of chaos
arising seems inconsistent with the results from the
theory of nonlinear oscillations [21,22] since it was estab-
lished that the symmetry does not forbid chaos. In con-

6101 ©1995 The American Physical Society



6102

trast, under certain conditions, the asymmetry of coupled
oscillators may lead to the regularization of their motion
[22].

In this article the study of the two-degree-of-freedom
system with velocity-weakening friction is performed
both analytically and numerically. The initial problem
was taken in a form similar to that in [19], but with the
friction law used in [4,20]. To our knowledge, the chaot-
ic behavior has not been detected yet in this system
without introduction of any spatial inhomogeneity. We
have found a rich variety of possible dynamics, including
chaos, and investigated the properties of the system un-
der the variation of control parameters.

The main analytical tool we exploited for predicting
the appearance of asymmetric dynamical patterns, which
may be used as precursors of chaos in this system, was
the averaging technique [23]. It permitted us to study the
interrelation between some of the possible periodic re-
gimes and helped in understanding the basic regularities
underlying the behavior of the system.

It has also turned out that the symmetry properties of
the equations play an important role in the dynamics,
leading to the ‘“‘strong” multistability. This means that
the chaotic behavior was always observed to be accom-
panied by a regular motion, i.e., typically, the strange at-
tractor coexisted with the periodic one in the phase
space. Depending on the initial conditions, the system
may evolve either chaotically or periodically, which is
not surprising since it is a typical phenomenon observed
in many studies of nonlinear oscillators [21,22,24]. The
importance of this property for the present case consists
in the fact that it seems to be preserved in numerical
simulation with many-degree-of-freedom systems [4]. It
was reported in [4] that zero initial conditions always led
to a periodic behavior, while the random ones resulted in
the now well-known irregular spatio-temporal patterns.

We have also studied the influence of a small area of
creeping motion in the friction law on possible dynamics.
Such an area is presumably a necessary component of any
realistic friction law [25], but it has hardly been investi-
gated yet. In the control parameter area under investiga-
tion the system demonstrated almost no essential
difference for the cases when the creeping motion was
present or absent, in the sense that no essentially new
types of dynamics appear with the introduction of the
small creeping region.

Finally, we have detected numerically a chaotic regime
reminiscent of the irregular behavior of the large, many-
degree-of-freedom system. We suppose that this regime
may be especially important for the modeling of earth-
quake dynamics. A similar one was also reported in [20]
for the system with an asymmetric friction law. It thus
seems to be generic for the systems of coupled oscillators
with velocity-weakening friction.

The article is organized as follows. In Sec. II the prin-
cipal equations of two-block motion are discussed with
particular attention given to the symmetry properties of
the system and the stability of fixed points. Section III is
devoted to the analysis of a single-oscillator system by
means of an averaging procedure. The results obtained
are generalized to the two-oscillator case in Sec. IV,
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where an approximate criterion of asymmetric limit cy-
cles arising is derived. The description of the results of
extensive numerical experiments and their comparison
with theoretical predictions made on the basis of apply-
ing the method of averaging to the principal equations is
the subject of Sec. V. In Sec. VI we summarize our main
results.

II. BASIC EQUATIONS
AND GENERAL PROPERTIES OF MOTION

The main object of our investigation it the system of
two blocks of mass m (Fig. 1) coupled to each other by a
linear spring of strength k, and attached to a stationary
plate by means of linear leaf springs of strength k,. The

- bottom of each block is in contact with the rough plate,

slowly moving with a constant speed a. This system may
be considered as a simplest deterministic model of two-
fault interactions. The dynamics of this system is de-
scribed by the following ordinary differential equations
for normalized coordinates x,x, measured from the rest
positions of blocks, depending upon generalized parame-
ters w, K:

dle 2 dxl
2 +wox |, —kx,+Fg, 7 =0,
(1)
d*x, ) dx,
i +wgx, —kx |+ Fy, 7 =0,

where w(?‘,:kp +k, and k=k,.

The derivation of this system from Newtonian equa-
tions of motion is straightforward and may be found, for
example, in [4,20]. Of the two parameters w, and « only
one is essential. The remaining one can always be made
equal to an arbitrary value by elementary scaling of coor-
dinates and time. We, however, prefer to preserve at the
present stage this form of equation because, from our
point of view, it is more convenient for the subsequent
analysis. The function F (dx; /dt) (hereinafter i =1,2) is
the friction force depending only on the relative velocity
of a block with respect to the moving plate. In our study
we use the following form of the friction law (see Fig. 2):
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FIG. 1. The mechanical model studied.
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FIG. 2. Friction law in Eq. (1).
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The maximal magnitude of the friction without loss of
generality is taken to be equal to unity F¢(vy)=1. The
parameter a is directly related to the speed of constant
plate motion. The value of ¥ controls the degree of insta-
bility introduced by the velocity-weakening friction. The
parameter g characterizes the creeping region where the
friction force is chosen to be proportional to the relative
velocity. At magnitudes of the velocity higher than a cer-
tain threshold value v, defining the width of the creeping
area, the usually exploited functional form of friction law
provides the instability necessary for stick-slip motion. If
g— o, we arrive at the well known [3-6] singular
friction-velocity relation without creeping. The introduc-
tion in this work of a parameter g thus permits us to in-
vestigate the transition from the friction law with a
singularity to the more physically relevant friction-
velocity dependence.

The solution of nonlinear equations (1) cannot be found
in closed form. However, some important information
about possible oscillatory regimes can be deduced from
the analysis of its fixed points. Rewriting the system in
the standard form, we obtain four ordinary differential
equations of first order

dz, _
a2

%=_w(2)21+"23 —Fg(z,),
dz,
dr
dz,
dr

(2)

=2z4,

= —w3z,+kz, —Fglz,)
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It can be seen that the system (2) possesses two fixed
points at z, 4 =0, z, ; =F(0)/(k—w}). Linearization of
Egs. (2) in the vicinity of these points gives the charac-
teristic polynomial

[A2+FL(0A+03—k][A*+F(0)A+w3+x]=0, 3)

where the stroke means differentiation with respect to ve-
locity. Then, at F.(0) <0 both fixed points are unstable,
and, hence, stick-slip motion occurs in this case. The fol-
lowing relation immediately follows from (2) and (3),
which should always hold in order to provide the ex-
istence of self-sustained oscillations:

vy <0 or, in other terms,
1T —
a>amE7\/%+(7’/g)‘% L@

The expression (4) is equivalent to the condition of Hopf
bifurcation to occur in the system. At the line in the con-
trol parameter space (CPS) defined by the equation
a=a,, the real parts of the eigenvalues given by (3)
change their sign, leading to the instability of fixed points
and to arising of a limit cycle in the phase space.

Additional general information concerning possible
solution types of the system (1) can be obtained from the
analysis of its symmetry properties. It is easy to verify
that Egs. (1) are invariant with respect to the change of
coordinates: x;<»>x,. This implies that, generally speak-
ing, two types of attractors could be expected to occur in
the phase space. The first one, which we will refer to as
symmetric, corresponds to the situation when the trajec-
tories in subspaces (z,z,) and (z,,z,) evolve in a sense
alike, producing similar phase space patterns. The
second type of motion, we refer to as asymmetric, leads
to different phase space portraits in the pointed out sub-
spaces. The asymmetric attractors always appear in
pairs, which is an apparent consequence of the invariance
of Egs. (1) with respect to the transformation x ;<>x,. As
will be shown below, the symmetric periodic attractors as
a rule exist in the phase space, at almost any values of
control parameters, and, thus, may be called superstable,
contrary to the asymmetric ones. The motion of the last
type, existing only in a restricted area of the CPS, plays
an important role in the formation of complicated dy-
namics. The largest region of chaotic behavior found nu-
merically (see Sec. V) is associated with arising of asym-
metric attractors. So, the appearance of asymmetric
periodic attractors may be used as a precursor of chaos in
this particular system.

Another important property of the system (1) is the
presence of two physically important time scales, depend-
ing on the interrelation between parameters w, k, ¥, and
a. Note, that parameters oy, k and ¥y mainly define the
characteristic time 7, of energy release (or slipping
motion) in the system, while the parameter a controls the
energy accumulation (or loading) time T, in the “stick”
phase of motion. Therefore, the properties of solutions
have to be different for the cases T, <<T,, which corre-
sponds to a<<1, and 7,>>T,, a<1. It will be demon-
strated numerically (Sec. V) and follows from some
analytical considerations (Sec. III) that the former case,
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which is of special importance for earthquake modeling,
occurs in a comparatively small area in the CPS where
the system evolves in a highly nonlinear regime. In the
latter case, the typical phenomena observed should be
similar to the ones characteristic of other oscillatory sys-
tems (see, for example, the results reported in
[21,22,26,27] for coupled oscillators of different types).

The distinctive properties of the present system are (i)
its nontrivial type of nonlinearity and (ii) the uniformity,
i.e., the equivalence of individual oscillators, that mani-
fests itself in equal values of parameters @, and « for both
oscillators constituting the system (1). Various reso-
nances are expected to occur under the variation of con-
trol parameters, demonstrating such phenomena as fre-
quency entrainment, hysteresis with characteristic jumps
of solutions from one branch to another, period dou-
blings, chaos, and intermittency. The results of numerical
experiments given below demonstrate the presence of all
pointed out regimes and indicate that the two types of
motion with different characteristic time scales are close-
ly related and there is a smooth transition between them.

If the nonlinearity is small, the well-known averaging
procedure is usually applied for the study of periodic
motions, i.e., limit cycles. In a typical situation (see [28]
for examples), when some nonlinear system is analyzed,
the degree of nonlinearity is totally defined by a single pa-
rameter, which is supposed to be small for the averaging
to apply. The peculiarity of the system (1) consists in the
fact that there is no such parameter that could control
nonlinearity. Instead, the magnitudes of a, ¥y, and g,
which determine the friction law, are responsible for non-
linear effects. To proceed, we will assume that coupling k
and the maximal magnitude of friction F.(v,) are small
for the time being. This permits us to formally perform
averaging and thus get some information about possible
oscillatory regimes. However, it should be kept in mind
that the results obtained will be valid only in the parame-
ter region where the solution is sufficiently close to the
harmonic oscillation. We suppose that the strong non-
linearity manifests itself in this system when the condi-
tions a <<1, g >>1, or y >>1 hold. In any case, like in
any similar problem, the predictions made on the basis of
averaging are only approximate ones and must be verified
numerically.

The theoretical analysis will be carried out in two
steps. First, the one-degree-of-freedom single-oscillator
system will be considered. The formulas obtained will be

Gw,)
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¥
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FIG. 3. Friction potential function in Egs. (5) and (8).
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used in the second step for the analysis of the two-
degree-of-freedom system. Then the numerical study will
be performed in order to verify the analytical predictions
made.

III. ONE-BLOCK SYSTEM

If we set the coupling parameter « in (1) equal to zero,
the system splits into two independent equations of single
oscillators. For the sake of convenience, the following
variables are introduced: y,=dx /dt and y,=d%x /dt?,
where x is either x; or x,. This transformation permits
us to shift the position of the fixed point to zero without
any complication of the form of the equations. The sys-
tem for the single oscillator in these variables looks like

Ay _
dr 2’
dy,
7=—w<2>1’1—G(y1)yz )
where
g aty;<v,
Gy)= Y (5)
- at >vg -
[+ylatyp 21770

The plot of the function G(y,) is depicted in Fig. 3. This
system possesses a fixed point at y, =y, =0 that is unsta-
ble if (4) holds and stable otherwise. It is clear from
physical considerations (restricted amplitude of block
motion) and can be easily shown analytically that the
solution of (5) is bounded. Then, since the system (5) is
two dimensional, the only alternative to a stable fixed
point is a limit cycle that should coexist in the phase
space with the unstable fixed point. To derive its ampli-
tude we will apply the averaging procedure in its stan-
dard way [23].

We will seek the solution in the form y,
=a(r)cos¥(t,7), where ¥(¢,7)=wyt +0(7) and 7 is slow
time. Then the following equations for the slow ampli-
tude and phase of the oscillation are derived by averaging
over the “fast” period T =27 /w:

0.02 «//'—_——T
0.01 ﬁ//———?

Y

0 100

FIG. 4. Amplitude of the limit cycle in system (5) [coordinate
of the fixed point in (6)] at g =260,a=0.05 (curve 1), 0.01 (curve
2), 0.015 (curve 3), 0.02 (curve 4), and 0.025 (curve 5).
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Vo
arccos— ifa>—v
Z—“=i yita)-£ 7T—§(a)+%sin[2§(a)] : g(a)=[ 0
i T if 0<a<-—vy, (6a)
(6) £a) sin*¥ d W
I(a)= . (6b)
%:0 . 2 fo [1+y(a+acos¥))?
The value of the integral I(a) can be found analytically
Here and has the form
|
1 d siné(a) c T d +c cosé(a)
— {—&(a)+ + ——= | ~tarctan | — ————
d2 [ 3 1+y(atvy)  Vie2—g2 1 2 V'e2—d?siné(a)
at —vy<a <a+;1/—
I(a)=

d sin&(a) + c

d+ccoséla)+V d*—c?siné(a)

1
pp l Ha) T et TV 14

at a>a+i s
Y

where d =ya and c=1+vya.

The fixed points of (6) represent periodic orbits in the
original equations (5). Their position can be found by
solving the nonlinear algebraic equation by equating the
right-hand side of (6) to zero. Apart from the trivial solu-
tion a =0, there is always another root a, corresponding
to the stable oscillation with nonzero amplitude, found
from the equation

yI(a)=§P(a) , %)

where
Pla)=m—§(a)+Lsin[2&(a)] .

In Fig. 4 the values of a, derived numerically by solving
(7) are depicted vs y at different magnitudes of a. As
could be expected, the amplitude of the limit cycle grows
with y. This property could be easily understood if we

R 1
151 ,
3
4
5
1 }
0 100 Y

FIG. 5. Ratio —a, /v, vs ¥ at g =260; a=0.005 (curve 1),
0.01 (curve 2), 0.015 (curve 3), 0.02 (curve 4), and 0.025 (curve
5).

1+y(atvg)

|

take into consideration that ¥ controls the instability de-
gree of the system.

It is worth noting also that this stationary oscillation
has the amplitude of the order of —v, and cannot be less
than this value. This follows from the structure of Eq. (6)
for the amplitude and Fig. 3. Since I(a) and P(a) are
non-negative, the positive parameters g and y are respon-
sible for the process of energy balance in the system (6),
the former defining the dissipation rate and the latter be-
ing responsible for the instability rate or amplitude in-
crease. (Note that the amplitude of the oscillation in-
creases during the slip phase of motion and decreases
when the block is stuck.) Suppose that at the initial time
moment the velocity and acceleration of the block are
close to zero. Then, since the fixed point at the origin is
unstable, the amplitude of the oscillation will increase to
the value —v,, where the energy begins to dissipate with
the rate defined by the parameter g. This rate is rather
high (the greater g value, the higher the rate) because the
creeping area is small and, consequently, the steady state
amplitude will be reached at some value not considerably
larger than —v,. This fact is illustrated in Fig. 5, where
the dependences of the ratio R=—a,/vy upon y at
different a are given.

From this results a very important conclusion that the
smaller the velocity of constant plate motion, the smaller
the amplitude of oscillations excited in this system. This
inference imposes a strong limitation on the ratio of time
scales responsible for stick and slip phases of motion,
making them about the same order of magnitude. The
estimate of T, /T, can be obtained if we assume that the
characteristic time of the slip phase is about the value of
the ““fast” period over which the averaging has been ap-
plied, i.e., T, =27 /w, whereas the corresponding time
scale of the stick phase is not greater than the duration of
the motion with constant velocity —v, between two con-
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secutive stick positions of the block defined by

< Axmax
T,=— ,
Vg

where Ax_ ., =2a,/w, since x =fy|dt= fao cos(wgt
+6,)dt.

Within this approximation T,/T, < —a,/v,=:const
under the variation of ¢ at fixed a and the ratio increases
with a decrease in a (see, Fig. 5). Hence it seems impossi-
ble to find oscillatory regimes with considerably different
time scales when the nonlinearity is small (<1 and
¥ <<1) and the averaged system describes properly the
behavior of solutions. The well separated characteristic
times have to appear in a strongly nonlinear area of con-
trol parameters, i.e., at very small a and large y. So, by
this expediency, the study of the single-block system car-
ried out here permits us to specify the control parameters
area where the model can produce the behavior in some
sense similar to the dynamics of faults.

The general observation following from the analysis of
a single-block oscillator is that the averaging technique
can be used for the analysis of oscillatory regimes in this
system and its application leads to results that qualita-
tively do not defy the common sense. However, it should
be clear that quantitative characteristics of the oscillation
calculated from the averaged system, such as, for exam-
ple, the amplitude and period of a limit cycle, may differ
significantly from the true ones in the strongly nonlinear
part of CPS.

IV. TWO-BLOCK SYSTEM

Now we will apply the averaging technique to the sys-
tem of two oscillators described by the equations written
in the form of (5), i.e., in terms of the velocity and ac-
celeration of two blocks

ay, _
dar 22
dy,
= ewi s =G0y,
(8)
dys _
dr U4
dy,
7:_‘0&’3 +ry; —G(y3ly, -

This system is obtained by the differention of (2) with
respect to time. The function G (y;) is similar to the one
in (5) and its plot is given in Fig. 3. Applying the pro-
cedure used in Sec. III, we seek the solution in the
form y,=a,(7)cos¥(t,7), y,=a,(7)cosW,(t,7), where
Wi (t,T)=wot +0,(7), Y,(t,7)=wyt +0,(r). The averag-
ing leads to the system of equations

da, a,
—=— @)= Elr—gay)
+sing (a)cos§ (a)]
+ K sinf ay,

20)0
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da, a,
—== ly1<a2>—§[w—§z<a2> ©
+siné,(a,)cosé,(a,)]
__ ksinf
2(00 1o
do __ Kk |92 a
—=—|[———|cos0O,
dr 2wy |a, a,

where 6=0,—0,, a; cosé;=v,, and I(a;) are given by
(6b) if we substitute a;,&;, ¥, instead of @, &, V.

Equating the right-hand sides of (9) to zero, we obtain
the system of nonlinear algebraic equations for the coor-
dinates of fixed points a},ay,0%. It is clear from the
form of the third equation of (9) that there are two types
of fixed points in this averaged system: (i) af =aj =a*,
6*=0 or 7 and (ii) af a3, 6*==*7/2. Hereafter, we
will refer to these situations as case (i) and (ii). They cor-
respond, respectively, to symmetric and asymmetric tra-
jectories in the system (7) (see Sec. II for the definition of
symmetries). It should be stressed that for a definite com-
bination of control parameters these fixed points coexist,
which brings into existence the multistability of the sys-
tem. This property is of substantial importance because
it is responsible for most of the complexity of the dynam-
ics, appearing as the variety of possible oscillatory
motions and transitions between them.

Let us now consider both cases separately.

Case (i). Actually, there are two types of symmetric
limit cycles in the system (8), which differ in the position
of the associated fixed points in (9) (6* =0 or 7). Follow-
ing [22], we will refer to them, respectively, as “in-phase”
and ‘“‘out-of-phase” solutions. Their amplitudes a* are
defined by exactly the same equation as (7) and the stabil-
ity is determined by the variational equations with the
characteristic polynomial

dH(a*) | |j2_jdHGa") €| _o
da d 5
Y
200 |
100 }
0

0 200 K

FIG. 6. Lines of saddle-node bifurcation of asymmetric fixed
points in the averaged system (9), delimiting the area of asym-
metric attractors existence. The parameters are g =260 and
a=0.03 (curve 1), 0.02 (curve 2); 0.01 (curve 3), and 0.005 (curve
4).
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FIG. 7. Position of Hopf bifurcation in system (2) (curve 1)
and lines corresponding to saddle-node bifurcation of asym-
metric fixed points in averaged equations (9) (curves 2—5). The
parameters are g =260 and k=200 (curve 2), 150 (curve 3), 100
(curve 4), and 50 (curve 5).

Note that this equation is the same for both fixed points.
This immediately leads to the conclusion that the linear
stability properties of both symmetric attractors are iden-
tical. Moreover, from the results obtained in Sec. III for
the single-block oscillator it follows that solutions of this
type exist at almost any value of control parameters and
are always stable. This means that under any combina-
tion of parameters there exist two stable limit cycles in
the phase space of the system (8) [or (2), which is
equivalent to (8)], at least in the region where Egs. (9) de-
scribe properly the solutions of (8). In Sec. V it will be
demonstrated that the results of numerical experiments
are in good agreement with this theoretical prediction.
In particular, numerical integration of the system (2) in-
dicates the presence of “superstable” symmetric attrac-
tors in the whole region of control parameters that was
investigated by us. The coexistence of in- and out-of-
phase attractors in the phase space causes additional
difficulty for the numerical analysis since it results in sud-
den jumps of phase trajectory between these regimes, as a
rule accompanied by hysteresis.

Case (ii). The asymmetric case is more complicated for
analytical treatment, first of all because of the nontrivial
character of the I(a;) dependence. Nevertheless, it ap-
pears possible to specify the region in the CPS where a
solution of this type exists. As shown in the Appendix,
this problem associated with solving the system of non-
linear algebraic equations for the coordinates of fixed
points in the phase space of the system (9) can be reduced
to the analysis of the relation

4w(2,y

— (=) {yl( Wo)—Elr—ew,)

+sing&( Wy )cos&§( W) ] ]Z -1, 1D

where Wy= — (2o, /mk)yI(—vy); E(W,) is defined by
W cosé( W)= —v,, and

1+
R S ) L. o A—
Y Vo \/(1+ay)2—y2v(2)

If only symmetric attractors are present, i.e., only
stable limit cycles together with unstable foci exist in the
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AP-1 SN(TW
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——— AP-1SN(N)

——o— AP-1PD
—=—— ACH BD
—e— SP-1 H2
—o— T BD

—+— SP-1PD
—>— SCH BD

a

FIG. 8. Bifurcation diagram of system (2) at g =260; x=100.
Arrows indicate the direction of parameter change when bifur-
cations described in the text occur. The heavy solid and dotted
lines are calculated from formulas (11) and (4), respectively; oth-
er curves are obtained numerically. AP-1 SN(T), saddle-node
(theoretical) bifurcation leading to the rise of asymmetric fixed
points in the system (9); AP-1 SN(N), saddle-node (numerical)
bifurcation of asymmetric limit cycles arising in the system (2);
H1, primary Hopf bifurcation; AP-1 PD, first period doubling
of asymmetric periodic orbits; ACH BD, breakdown of the
chaotic attractor originating from asymmetric solutions; SP-1
H2, secondary Hopf bifurcation of a symmetric period-1 orbit,
with a two-dimensional torus appearing; TBD, torus break-
down; SP-1 PD, first period doubling of the symmetric period-1
attractor; SCH BD, breakdown of the chaotic attractor origi-
nating from the symmetric orbit; SP-3 SN, period-3 saddle-node
bifurcation.

z, a zZ, b
0.025 0.025
-0.015 -0.015
-0.011 -0.007 z, -0.011 -0.007 Z,

-0.015 -
J0.011

FIG. 9. Evolution of phase portraits of asymmetric attractors
(thin lines) and coexisting symmetric in-phase solutions with a
change in ¥ at a=0.015; ¥ =8.0 (a) and (b), 9.0 (c) and (d), 12.0
(e).
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phase space, it is insufficient for chaos to arise. The
source of complexity in nonlinear dynamical systems is
saddle-type unstable orbits that typically arise together
with additional stable periodic solutions. In order to
demonstrate how this occurs in the given system, let us
consider its characteristic equation

a¥ af
el
2w | af ay
dH(at) dH(a3) 2
T a2+ | =0
da da 4a)(2)

(12)

It is clear from (12) that of the two fixed points of this
type (6*=m/2 or —/2), at least one is unstable. Thus
the prediction made for the appearance of asymmetric
periodic attractors would be in essence the indication of
the arising of unstable saddle orbits and associated com-
plexity in the phase space.

Before proceeding to the numerical analysis of the sys-
tem (2), we need to specify the region of interest where
complicated dynamics is likely to occur. We suggest the
use of the expression (11) for this purpose and solve it nu-
merically in order to obtain the borderlines of existence
of asymmetric attractors in the two-parameter sections of
the CPS. This can be achieved by fixing two of the prin-
cipal parameters (x,g,a,y7) and solving Eq. (11) at
different values of the remaining two. The results of such
calculations at various combinations of parameters are
given in Figs. 6 and 7. The curves correspond to the
equality sign in (11) and the region of existence for the
asymmetric solutions lies to the left of these curves. To-
gether with these lines, in Fig. 7 the curve corresponding
to the condition (4), i.e., the position of Hopf bifurcation,
is also shown. The self-sustained oscillations exist to the
right of this line. So the area of complicated dynamics is
likely to exist between the curves defined by Eqgs. (11) and
(4). A straightforward way to check the predictions
made is to solve numerically Egs. (2), which is done in the
next section.

0.005 0.005

-0.015 -0.015
20.0115 -0.0095 z,

0.005

-0.015 S—
Z0.011 20.007 z,

FIG. 10. Coexisting in- and out-of-phase symmetric attrac-
tors at «=0.015; ¥y =0.2 (a), 2.0 (b), and 6.0 (c).
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V. NUMERICAL EXPERIMENTS

We integrated numerically the system (2) by the
Runge-Kutta procedure of fourth order and studied the
principal bifurcation phenomena that occur under the
variation of control parameters. The continuation tech-
nique was used for tracking the lines of local bifurcations
on two-dimensional cross sections of the CPS. Since we
were interested only in the global features of this system,
we restricted our study to the investigation of the oscilla-
tory regimes that occupy significant areas in the CPS.
Such extended regions were detected for various period-1
and period-3 frequency-entrained solutions, two-dimen-
sional tori, and chaotic attractors of different types. We
thus did not explore the abundant higher-order frequency
entrainments and resonances on tori because of their
seemingly insignificant influence on the global picture of
the dynamics.

In order to distinguish between chaos and quasiperiod-
icity we calculated the largest characteristic Lyapunov
exponent. This quantity may now be considered as a
standard tool for detecting chaotic dynamics in nonlinear
systems.

The majority of numerical results presented in this
work were obtained at finite values of the parameter g, re-
sponsible for the character of the nonlinear friction law
(1a). Such a choice for g makes nonsingular the depen-
dence of friction force upon the velocity and so enables us
to apply the standard technique of calculation for the
Lyapunov exponent [29]. When studying the singular
case, we applied only the analysis of phase portraits,
two-dimensional projections of three-dimensional Poin-
caré cross sections, and the continuation technique, ex-
trapolating the properties of the nonsingular system to
the singular one. The general features of bifurcation dia-
grams seem to be preserved in the presence of singularity,
as well as the typical scenarios of chaos arising and a gen-
eral view of phase portraits.

In all our calculations we used the following value of
natural frequency of oscillators: w3=201. Out of the
remaining four control parameters, a, v, g, and k, we
fixed some two of them and considered the changes in the
system’s behavior under the variation of the remaining
two.

Let us demonstrate first how the dynamics of this sys-
tem depends upon the parameters determining the form
of friction law. For this purpose we put g =260, k=100
and study successively the transformation of asymmetric
and symmetric attractors under the change in a and y.

Z,

0.04

-0.02
-0.01 0 z,

FIG. 11. Coexisting symmetric attractors: two-dimensional
torus (thin line in the center of the plot), period-3 in-phase orbit
(one-point line), and period-1 in-phase (two-point line) orbit.
Parameter values: a=0.015; ¥ =50.0.
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35

20

5

0

FIG. 12. First period-doubling lines of asymmetric attractors
under the variation of g. x=100.0.

The results of extensive numerical experiments are shown
in Figs. 8—11 in the form of the bifurcation diagram and
corresponding phase portraits of attractors. Throughout
this section we use two two-dimensional projections in
order to depict asymmetric attractors and a single one for
the symmetric motions, being aware that the second pro-
jection looks exactly the same. It is also worth noting
that under the variation of control parameters, attractors
of different types change in certain respects independent-
ly, which manifests itself in a rather complicated pattern
of bifurcation lines in Fig. 8. Thus, it should be kept in
mind that different lines often correspond to different at-
tractors. Another important peculiarity of this system is
the “superstability” of symmetric attractors. This means
that at any point of the CPS we explored there always ex-
isted at least one regular (periodic) stable symmetric solu-
tion.

The initial area for our study was chosen in accordance
with Fig. 7, i.e., in the region where, as follows from the
results of Sec. IV, asymmetric solutions must occur. In
Fig. 8 the lines H1 and AP-1 SN(T), delimiting the area
where asymmetric fixed points exist in the phase space of
the system (9), correspond to curves 1 and 4 in Fig. 7, re-
spectively. The arrows show the direction of change in
the control parameters leading to the Hopf and saddle-
node bifurcations, respectively.

The numerically obtained line AP-1 SN(N) indicates
the position where asymmetric period-1 limit cycles arise
in the phase space of the system (2). A comparison of the
mutual arrangement of lines AP-1 SN(N) and AP-1
SN(T) in this diagram enables us to conclude that the
quality of the prediction made on the basis of averaging
may be considered as satisfactory, taking into account
the approximate character of our theoretical analysis.
An example of the asymmetric period-1 attractor is given
in Figs. 9(a) and 9(b). Note that simultaneously with the
pointed out orbit, another attractor [not shown in Figs.
9(a) and 9(b)], symmetric with respect to the transforma-

Z

0.02

-0.0002
-0.01

-0.01
L -0.012

FIG. 13. Phase portraits of chaotic attractors at g= oo,
k=100; ¥y =14.5, (a) @=6.25X 1077 and (b) =5.0625X 1073,
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FIG. 14. Time profiles corresponding to the phase portraits
of Fig. 13.

tion x ;<>x,, exists in the phase space.

Our further experiments show that, when moving in-
side the area enclosed by the line AP-1 SN(N), the asym-
metric limit cycles undergo period-doubling bifurcation
(line AP-1 PD in Fig. 8) and become chaotic through sub-
sequent period doublings. One of the coexisting strange
attractors is depicted in Figs. 9(c) and 9(d). Under the
change of control parameters towards the line ACH BD,
both attractors first merge at symmetry increasing bifur-
cation (not shown) and then disappear at the ACH BD
curve in the blue-sky catastrophe. In such a manner,
when crossing the line ACH BD, a trajectory suddenly
jumps to the coexisting symmetric period-1 in-phase at-
tractor [see Figs. 9(a)-9(d)]. The symmetric strange at-
tractor just before the catastrophe is given in Fig. 9(e).

Another chaotic motion area detected in our simula-
tion is associated with a symmetric in-phase attractor. It
occurs at a relatively small magnitude of the parameter y
and the threshold value ¥, of chaos arising is almost in-
dependent of a. An interesting feature of this regime is
that even in the chaotic state, both oscillators constitut-
ing the system move almost identically, thus providing an
example of synchronized chaos [30]. In order to give an
illustration of the way this regime arises, we begin from
the very low values of ¥, where only symmetric periodic
motions exist. Coexisting in- and out-of-phase periodic
attractors are shown in Fig. 10(a). Under the increase of
v, the in-phase one undergoes the first period-doubling
bifurcation at the line SP-1 PD of Fig. 8, with a subse-
quent transition to chaos through period doublings. The
resulting synchronous strange attractor is depicted in
Fig. 10(b) together with the remaining almost unchanged
out-of phase period-1 orbit. After crossing the curve
ACH BD, this chaotic attractor disappears in a blue-sky
manner and the trajectory is attracted to the out-of-phase
periodic solution.

The set of possible oscillatory regimes existing in the
part of the CPS shown in Fig. 8 is not exhausted by
periodic and chaotic motions only. The quasiperiodic at-
tractor was also detected in our experiments within the
area delimited by the lines SP-1 H2 and TBD. The cross-
ing of the curve SP-1 H2 in the direction shown by the
arrow results in secondary Hopf (or Neimark) bifurca-
tion, when the stable out-of-phase symmetric attractor
transforms into a two-dimensional torus [see Fig. 10(c)].
This torus exists in an extended area of the CPS and may
coexist with different attractors mentioned above, includ-
ing chaotic ones. Moreover, when approaching the line
TBD, the torus itself transforms to a chaotic attractor
through losing its smoothness. The simultaneous pres-
ence of quasiperiodic and chaotic motions in the phase
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space makes the bifurcation pattern especially complicat-
ed in this area, mainly because of various resonances that
occur on the torus. We, however, did not study these
patterns in detail in the framework of the present paper.

Apart from the attractors already discussed, there ex-
ists another one, a period-3 solution. We calculated the
position of the borderline for the period-3 regime, occu-
pying a large area in the CPS, and depicted it as the SP-3
SN curve in Fig. 8. Figure 11 provides an illustration of
this regime, where it coexists with a symmetric torus and
periodic in-phase attractor.

The next step we made for understanding the general
regularities of interrelation between different regimes in
the system consisted in increasing the parameter g, which
controls the width of creeping area in the friction law
(1'). As an example, we produced Fig. 12, where we
demonstrated how the chaos area delimited by the line
AP-1 PD from Fig. 8 shrinks, remaining finite, when g
tends to infinity.

Now we would like to return to the discussion of the
problem concerning the ratio between time scales of stick
and slip phases of motion. As demonstrated in Sec. III,
the single-oscillator system ‘“‘tends” to keep this quantity
approximately constant, the decrease in a being the only
way of separating the time scales. This property was ob-
served to be preserved in the two-block system. In fact,
almost all the attractors mentioned above, including
chaotic ones, are characterized by a not very high value
of this ratio, typically less than or equal to 10. The main
cause of such behavior is presumably not the sufficiently
low values of a used in many of our simulations. The re-
striction from below on a imposed by the relation (4) did
not permit us to assign arbitrarily small values to this pa-
rameter, which is defined, in turn, by the finite magnitude
of g. On the contrary, at g sufficiently large, we observed
the chaotic regime with significantly separated time
scales within the area delimited by the line AP-1 PD, in
the region of a <<1. This case corresponds to the strange
attractor emerging as a result of period doublings from
the asymmetric orbit. A phase portrait of such a regime
is given in Fig. 13(a) and the corresponding time profile is
depicted in Fig. 14(a). It is clearly seen that the behavior
of the system consists of asynchronous small size slipping
events, intermittent with synchronously occurring two-
block movements. It is also evident that the characteris-
tic time of slip phases is much smaller than the duration
of stick periods. For comparison, in the same figures we
plotted a phase portrait and time realization of the
strange attractor at a slightly higher value of parameter
a. There are two basic features distinguishing the latter
case: First, the ratio of characteristic times is much
smaller; second, there is no clear distinction between
small and large slipping events. These differences become
even more pronounced at larger ¥. However, the in-
crease in ¥ may lead to the destruction of the chaotic re-
gime in the blue-sky catastrophe, which is an inevitable
feature in this region of the a-y plane. It should also be
noted that no sharp transition was observed between the
two regimes pointed out. Under a decrease in «, the
small slipping one-block events become more and more
pronounced, which eventually results in a regime with
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B

-0.03

-0.04 -0.01 a,

FIG. 15. Graphical solution of algebraic equations (A1) at
£=260.0, «=0.015, ¥y =20.0, k= 100.0, and ©3=201.0.

separated time scales. So, from the point of view of
dynamical chaos theory the both regimes are one and the
same strange attractor.

VI. CONCLUSION

The primary goal of the present work was to elucidate
what types of behavior may occur in a mechanical model
of faults interaction with two degrees of freedom. We
have found that typically there exist a number of period-
ic, quasiperiodic, and chaotic motions in extended re-
gions of the CPS. The chaotic oscillations were of our
particular interest, showing a considerable promise in
modeling earthquake activity [31]. It should be stressed
that the presence of chaotic motion is typical for the sys-
tem studied, even in the absence of any spatial inhomo-
geneity.

A distinctive feature of our study is the modified
friction-velocity relation, which, on the one hand, is more
realistic than the one used in previous works, since it in-
cludes the presence of a creeping motion, and, on the oth-
er hand, its form enabled us to perform an analytic inves-
tigation of some characteristic oscillatory regimes and to
perform well controlled numerical experiments in a large
area of the CPS.

The rise of asymmetric periodic attractors was demon-
strated to play a key role in the formation of chaotic sets
in the phase space. By applying the averaging procedure,
we succeeded in getting the approximate appearance con-
dition of the asymmetric motions, thus providing a tool
for predicting the rise of chaos associated with this type
of attractors.

Extensive numerical experiments have been performed
in order to explore the principal features of the behavior.
The multistability property is demonstrated to be an im-
portant and ubiquitous feature of this system, defining
both the sudden and gradual transformations of phase
portraits under the change in control parameters. The
transitions between attractors with different types of sym-
metry were also traced and studied in detail.

It follows from both theoretical predictions and nu-
merical simulations that for a certain combination of «a
and «, it is possible to find chaotic regimes at almost any
value of parameter y, responsible for the instability rate
during the slip phase of blocks motion. Hence the system
can produce complicated dynamics with practically any
particular form of velocity weakening friction. This
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demonstrated not to be the case for the remaining two
parameters a and k. On the contrary, the general proper-
ties of motion strongly depend on their magnitudes. The
large areas of chaotic dynamics in the CPS as a rule exist
when the following approximate relations hold: a<<1
and k=w3/2. This imposes certain limitations on the
corresponding physical parameters of this model.
Specifically, the velocity of slow steady motion of the bot-
tom plate in Fig. 1 should be kept small in order to pro-
duce chaos. Otherwise only periodic oscillations occur.
It is interesting to note that exactly the same behavior
was recently reported from the physical experiment with
the single spring-block system [32]. It was also shown
that in order to produce chaotic regimes with both
significantly different time scales of stick and slip phases
of motion and well separated magnitudes of slip events,
the conditions of small values of @ and g— o should be
met together with fine-tuned values of the parameter y.

Note added. After the present paper had been submit-
ted for publication, we became aware of a work [33]
where the numerical study of a similar model was per-
formed, but with a different block driving mechanism
(train model). Other distinctive features of our study are
the usage of analytical methods for predicting the appear-
ance of complex time behavior in the system and the de-
tailed study of bifurcations in a broad range of control
parameters variation.
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APPENDIX

We will show in this appendix how to obtain the in-
equality (11) from the system of three nonlinear algebraic
equations for the coordinates of fixed points of the system
(9). Equating the right-hand sides of (9) to zero, rear-
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ranging the terms, and taking into account that a}+a}
and 0* =+ /2, where variables with an asterisk are the
sought for values, we obtain the following system of equa-
tions for the steady state amplitudes:

200a5
at= K(;_Z [yl(af)—g[ﬂ'_é‘(af)
+sin§(a§)cos§(a§)]] ,
) . (A1)
a
ay=-— 0:;1 [yl(a’f)—g[fr—g(af)

+siné(a§ )cosé(at )] } .

The asymmetric periodic motions with amplitudes a§,a}
are expected to exist in the system (7) if algebraic equa-
tions (A1) have positive roots. The graphical representa-
tion of the solution is given in Fig. 15, where the curves
defined by Egs. (A1) are plotted in the a,a, coordinates.
Their intersection gives the position of the root, whereas
the absence of the intersection means that there exist no
asymmetric fixed points in (9) and no associated limit cy-
cles in (8). The points 4 and B on this plot correspond to
the cases a = —v, for the first and the second equations
of (A1), respectively, and their position can be obtained
by substituting the value of v, into (A1) and noticing that
E(—vg)=m,
A=(Wy,—vy), B=(—vy,—Wy). (A2)

Numerical experiments indicate that under variation of
the control parameters, the only way for the root to
disappear is by moving point A to the left of the second
curve. Thus the borderline in the CPS enclosing the re-
gion of asymmetric attractors existence is defined by the
condition that A4 belongs to both of the curves pointed
out. Calculating the value of W, from the second equa-
tion of (A1) and substituting it into the first leads to the
relation (11).
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